Home
Class 12
MATHS
int(1)^(e)(ln x)/(x^(2))dx=...

`int_(1)^(e)(ln x)/(x^(2))dx=`

A

`1 - 2/e`

B

`2/e`

C

`2/e +1`

D

`e/2 -1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(e) ((ln x )^(3))/(x) dx=

int_(0)^(oo) (ln x)/(x^(2)+a^(2))dx=

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

int_(1)^(4) ln [x] dx=

int e^(x)( log x+(1)/(x^(2)))dx=