Home
Class 12
MATHS
If int(n)^(n+1) f(x) dx = n^(2) +n, AA n...

If `int_(n)^(n+1) f(x) dx = n^(2) +n, AA n in I` then the value of `int_(-3)^(3) f(x) dx` is equal to

A

6

B

10

C

16

D

12

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

If for every ineger n , int_(n)^(n+1) f(x) dx=n^(2) then the value of int_(-2)^(4) f(x)dx=

int_(0)^(1)x(1-x)^(n)dx=

For m=n and m, n in N then the value of int_(0)^(pi) cos m x cos n x dx =

For n in N , the value of int_(0)^(pi) sin^(n) x*cos^(2n-1)x dx is

Let f:R to R be a continuous function and f(x)=f(2x) is true AA x in R . If f(1) = 3 then the value of int_(-1)^(1) f(f(x))dx=

For m, n in N and m != n then the value of int_(0)^(pi) sin m x " " sin n x " " dx=

If n is an integer then the value of int_(0)^(pi) e^(cos^2x)cos^(3) ((2n+1)x)dx=

If I_(n)=int_(0)^(pi)x^(n). sin x dx then the value of I_(5)+ 20I_(3)=