Home
Class 12
MATHS
int(0)^(pi) x f (sin x) dx is equal to...

`int_(0)^(pi) x f (sin x) dx` is equal to

A

`pi int_(0)^(pi) f(cos x) dx`

B

`pi int_(0)^(pi) f(sin x) dx`

C

`pi/2 int_(0)^(pi/2) f (sin x)dx`

D

`pi int_(0)^(pi/2) f(cos x) dx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x dx =

int_(0)^(2pi) sin^(7) x dx=

int_(0)^(pi) sin^(7) x dx=

int_(0)^(pi//2) x^(2)sin x dx=

int_(pi)^(10pi) |sin x| dx=

int_(0)^(pi//2) x sin^(8) 2x dx=

int_(0)^(a)f(x)dx=lambda and int_(0)^(a)f(2a-x)dx=mu then int_(0)^(2a)f(x) dx is equal to