Home
Class 12
MATHS
int(0)^(7) [x]dx=...

`int_(0)^(7) [x]dx=`

A

21

B

20

C

22

D

23

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(5) [x] dx=

int_(0)^(3)[x]dx=

int_(0)^(2)[x-2]dx=

If a, b, c are the values of int_(0)^(3)[x]dx,int_(0.5)^(4.5)[x]dx,int_(0)^(2)[x^(2)]dx then the ascending order of a,b, c is

int_(0.5)^(4.5)[x]dx=

int_(0)^(2)x^(2)[x]dx=

int_(0)^(50)(x-[x])dx=

If int_(-3)^(2) f(x)dx= 7/3 and int_(-3)^(9) f(x)dx= - 5/6 then int_(2)^(9) f(x)dx=

int_(0)^(2) |1-x| dx