Home
Class 12
MATHS
int(0)^(pi//3) |tan x - 1|dx=...

`int_(0)^(pi//3) |tan x - 1|dx=`

A

`pi/2`

B

`pi/4`

C

`pi/6`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan^(5) x dx=

int_(0)^(pi//4) tan^(6) x dx=

int_(0)^(pi//2) (5 tan x - 3 cotx)/(tan x + cot x) dx=

int_(0)^(pi//2) ln (tan x+ cot x)dx=

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=

If int_(0)^(pi) f(tan x) dx= lambda then int_(0)^(2pi) f(tan x) dx=

If int_(0)^(pi//2) ln (sin x) dx= - pi/2 ln 2 then int_(0)^(pi) ln (1+ cos x) dx=

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/4)log (1 +tan x) dx

If int_(0)^(pi//2) sin^(6) x dx = (pi)/(32) then int_(-pi)^(pi) (sin^(6)x + cos^(6) x)dx=