Home
Class 12
MATHS
If f(x) =int(-1)^(x) |t|dt then for any ...

If `f(x) =int_(-1)^(x) |t|dt` then for any `x ge 0, f(x)=`

A

`1/2 (1-x^(2))`

B

`(1-x^(2))`

C

`1/2(1+x^(2))`

D

`1+x^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

If f(x) = int_(0)^(x) t.e^(t) dt then f'(-1)=

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

The greatest value of f(x)=int_(1)^(x)|t|dt on the interval [-(1)/(2), (1)/(2)] is :

If f(x) = int_(x)^(x^(2)) (t-1)dt, 1 le x le 2 , find the greatest value of f(x).

Let f be a real -valued function defined on the interval (-1, 1) such that e^(-x)f(x) = 2+int_(0)^(x) sqrt(t^(4) + 1)dt for all x in (-1, 1) and let f^(-1) be the inverse function of f. then show that (f^(-1)(2))^1 = (1)/(3)

Let F(x)= f(x) + f(1/x) , where f(x)= int_(1)^(x) (ln t)/(1+t)dt , then F(e)=

If g(x) = int_(0)^(x) cos 4(t) dt , then g(x+pi) equals

If f(x)=int_(x)^(x+1) e^(-t^(2)) dt , then the interval in which f(x) is decreasing is