Home
Class 12
MATHS
int(0)^(pi//4) tan^(6) x dx=...

`int_(0)^(pi//4) tan^(6) x dx=`

A

`pi/4 + 3/15`

B

`pi/4 + 2/3`

C

`13/15- pi/4`

D

`pi/4 - 13/15`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan^(5) x dx=

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=

If I_(n)=int_(0)^(pi//4) tan^(n) x dx then {:(" " Lt),(n rarr oo):}n(I_(n)+I_(n+2))=

If int_(0)^(pi//2) sin^(6) x dx = (pi)/(32) then int_(-pi)^(pi) (sin^(6)x + cos^(6) x)dx=

If I_(n) = int_(0)^(pi//4) Tan^(n) x dx then I_(2)+I_(4), I_(3)+I_(5), I_(4)+I_(6)..... are in

int_(0)^(pi//8) cos^(6) 4 x dx=

int_(0)^(pi//3) |tan x - 1|dx=

int_(0)^(2pi) x cos^(6) x dx=

Find the values of the following integrals (v) int_(0)^(pi/4) sec^(6)x dx

Find int_(0)^(pi//2) sin^(4)x dx