Home
Class 12
MATHS
If I(n)= int(1)^(e) (log x)^(n) dx then ...

If `I_(n)= int_(1)^(e) (log x)^(n) dx` then `I_(8) + 8I_(7)=`

A

1

B

e

C

2

D

2e

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=

If I_(m,n) - int (x^(m) (logx)^(n) dx then I_(m,n) - (x^(m+1))/((m + 1)) (logx)^(n) =

I_(m, n)= int_(0)^(1) x^(m) (ln x)^(n) dx=

If for n gt 1, P_(n)=int_(1)^(e ) ( logx)^(n)dx , then P_(10)-90P_(8) is equal to:

If I_(m.n) = int sin^(m) x cos^(n) xdx then I_(5,4) =

If I_(m,n)=int (x^(m))/((log x)^(n))dx then (m+1)I_(m,n)-n.I_(m,n+1)=