Home
Class 12
MATHS
If f(x)=Ax^(2) +Bx satisfies the conditi...

If `f(x)=Ax^(2) +Bx` satisfies the conditions `f^(1)(1)=8` and `int_(0)^(1) f(x)dx=8/3`, then

A

`A=1, B = -4`

B

`A = 2, B =4`

C

`A = -2, B = 4`

D

`A = -2, B = -4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a) (f(x)+f(-x))dx=

If f(x) = x^(3) + bx^(2) + ax satisfies the conditions of Rolle's theorem in [1, 3] with c = 2 + (1)/sqrt(3) then (a, b) is equal to

The function f: R rarr R satisfies the condition a f(x-1) + b f(-x)=2(|x|+1 . If f(-2)=5 and f(1)=1 , then 8(b-a)= _______

If f(x) satisfies Rolle's theorem for f(x) in [a,b] then int_(a)^(b) f'(x) dx =

f(x) = log((1+x)/(1-x)) satisfies the equation: f(x_(1)) +f(x_(2))

int_(0)^(1)(x^(3))/(1+x^(8))dx=

If a function f statisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2)) (x ne 0) then domain of f(x) is

int_(-1)^(1)(ax^(3)+bx)dx=0 for

int_(-1)^(1)(ax^(3)+bx)dx=0 for

If f(x) = x^(3) + bx^(2) +ax satisfies the conditions of Rolle's theorem on [1,3] with c = 2+(1)/(sqrt(3)) then (a,b) =0