Home
Class 12
MATHS
If I(1) = int(x)^(1) (1)/(1+t^(2))dt and...

If `I_(1) = int_(x)^(1) (1)/(1+t^(2))dt` and `I_(2)=int_(1)^(1/x) (1)/(1+t^(2))dt` for `x gt0`, then

A

`I_(1)=I_(2)`

B

`I_(1) gt I_(2)`

C

`I_(1) lt I_(2)`

D

Cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

If I_(1) = int_(1)^(2)(dx)/(sqrt(1+x^(2))) and I_(2)= int_(1)^(2) (dx)/(x) then

int_(0)^(1) (x^2)(1+x^2) dx =

If I_(1)=int_(1//e)^(tanx)(t)/(1+t^(2))dtandI_(2)=int_(1//e)^(cotx)(dt)/(t(1+t^(2))) then the values of I_(1)+I_(2) is

If I_(n)=int (t^(n))/(1+t^(2))dt, then I_(n-2)=

f(x)= int_(0)^(x) ln ((1-t)/(1+t))dt rArr

If I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx, then

int_(1//2)^(1) (1)/(sqrt(x-x^(2)))dx=

If A = int_(0)^(1) (e^(t))/(1+ t)dt then int_(0)^(1) e^(t) ln (1 + t) dt=