Home
Class 12
MATHS
If I(1)=int(e)^(e^(2))(dx)/(logx)andI(2)...

If `I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx,` then

A

`I_(1)=I_(2)`

B

`2I_(1)=I_(2)`

C

`I_(1)=2I_(2)`

D

`I_(1)I_(2)=1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise - 2.1 (Level-1)|6 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - II|156 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

int(x+1)^(2)e^(x)dx=

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

int_(0)^(1)(1+e^(-x))dx=

int_(1)^(e)((logx)^(3))/(x)dx=

int(1)/(e^(x)+e^(-x))dx

int_(e^(-1))^(e^(2))|(logx)/(x)|dx=

int (1)/((e^(x)-1)^(2))dx=

int_(1)^(e)(ln x)/(x^(2))dx=

int_(0)^(oo)[(2)/(e^(x))]dx=