Home
Class 14
MATHS
[x=5],[" 36.Thred vectors a hand e satis...

[x=5],[" 36.Thred vectors a hand e satisfy the conditioria "+b+c=0" ,maluatit "],[mu=3-b+5-c+c+i" ,if "|vec a|=1,b|=4" and "bar(c)=2" ."],[" Sol."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Three vectors vec a, vec b and vec c satisfy the condition vec a + vec b + vec b + vec c = vec 0 .Evaluate the quantity mu = vec a * vec b + vec b * vec c + vec c * vec a , if | vec a | = 1 | vec b | = 4 and | vec c | = 2

Three vectors veca, vec b and vec c satisfy the condition vec a + vec b + vec c = 0 .Evaluate the quantity. mu = vec a.vec b + vec b.vec c+ veca.vec c if |vec a| = 1, |vec b| = 4, |vec c| = 2

If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=3, |vec(b)| =4 and |vec(c )|=5 , then show that vec(a).vec(b)+vec(b).vec(c )+vec(c ). vec(a)=-25 .

Three vectors vec a ,\ vec b ,\ vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a ,\ if\ | vec a|=1,\ | vec b|=4\ a n d\ | vec c|=2.

Three vectors vec a , vec b , vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a , if | vec a|=1, | vec b|=4 a n d | vec c|=2.

Three vectors vec(a),vec(b) and vec( c ) satisfy the condition vec(a)+vec(b)+vec( c )=vec(0) . Evaluate the quantity mu=vec(a).vec(b)+vec(b).vec( c )+vec( c ).vec(a) , if |vec(a)|=1,|vec(b)|=4 and |vec( c )|=2 .

Three vectors overline(a),overline(b) and overline(c) satisfy the condition vec(a)+vec(b)+vec(c)=vec(0) evaluate mu=vec(a).vec(b)+vec(b).vec(c)+vec(c).vec(a) if |vec(a)|=1,|vec(b)|=4 and |vec(c)|=2

If vec a, vec b, vec c are unit vectors satisfying the condition veca+ vec b+ vec c= 0 then show that vec a. vec b+ vec b.vec c+ vec c. vec a= -3//2 .

Three vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + vec(c ) = vec(0) , if |vec(a)| = 1 |vec(b)| = 4 and |vec(c )|= 2 , then find the value of mu = (vec(a).vec(b) +vec(b).vec(c ) + vec(c ).vec(a))