Home
Class 12
MATHS
The value of lim (x to (pi)/(6)) (3 sin ...

The value of `lim _(x to (pi)/(6)) (3 sin x- sqrt3 cos x)/(6x -pi)` is equal to-

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to (pi)/(6)) [(3sinx - sqrt(3)cos x)/(6x -pi)] is equal to

lim_(x rarr pi/6) ((3sinx - sqrt3 cos x)/(6x-pi)) =

lim_ (x rarr (pi) / (6)) (3sin x-sqrt (3) cos x) / (6x-pi)

The value of lim_(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) equals

lim_(x->(pi)/6)(3sinx-sqrt(3)cosx)/(6x-pi)

underset(x to pi//6)lim ((3sin x-sqrt3cosx)/(6x-pi))=

lim _(xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

lim _(xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

lim_( x to pi//6) (sin(x-pi//6))/(sqrt3//2-cosx) is equal to

The value of lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to