Home
Class 12
MATHS
" 31.If "y^(1/m)+y^(-1/m)=2x" then prove...

" 31.If "y^(1/m)+y^(-1/m)=2x" then prove that "(x^(2)-1)y_(2)+xy_(1)=m^(2)y" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(1//m)+y^(-1//m)=2x , then prove that (x^(2)-1)y_(2)+xy_(1)=m^(2)y^(2)

If 2x= y^((1)/(m)) + y^(-(1)/(m)) (n ge 1) then prove that, (x^(2)-1) y_(2) + xy_(1) = m^(2)y

If y = sin(mcos^(-1)x) then prove that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0 .

If y^(1/3) + y^(-1/3) = 2x, prove that (x^2 - 1)y_2 + xy_1 = 9y .

If 2x=y^(1/m)+y^(-1/m) , then prove that (x^2-1)y_(n+2)+(2n+1)xy_(n+1)+(n^2-m^2)y_n=0 .

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

If y=e^(m sin^(-1)x) then prove that (1-x^2) y_2 - xy_1 = m^2 y

If y=(cos^(-1)x)^(2) , then prove that : (1-x^(2))y_(2)-xy_(1)-2=0 .

If y =e ^( m Cos ^(-1)x) then show that (1- x^(2)) y _(2) - xy_(1) -m^(2) y =0.

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0