Home
Class 12
MATHS
" 1."sin^(-1)(1)/(x)=?...

" 1."sin^(-1)(1)/(x)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1)1/(sqrt(1+x))

Find the value of sin^(-1)x+sin^(-1)(1)/(x)+cos^(-1)x+cos^(-1)(1)/(x)

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) , then (dy)/(dx) is

Ify=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)), then (dy)/(dx)

sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1))

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) , then find (dy)/(dx) .

Differentiate sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1))

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) then (dy)/(dx) is equal to :

If y= sec ^(-1)(( x+1)/(x-1)) +sin ^(-1) ((x-1)/(x+1) ) , " then " (dy)/(dx) is :