Home
Class 12
MATHS
y=e^(ax)cos bx...

y=e^(ax)cos bx

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=e^(ax)sin bx and v=e^(ax)cos bx, then what is

Verify that the function y = c_(1) e^(ax) cos bx + c_(2)e^(ax) sin bx , where c_(1),c_(2) are arbitrary constants is a solution of the differential equation (d^(2)y)/(dx^(2)) - 2a(dy)/(dx) + (a^(2) + b^(2))y = 0

Verify that the function y = c_(1) e^(ax) cos bx + c_(2)e^(ax) sin bx , where c_(1),c_(2) are arbitrary constants is a solution of the differential equation (d^(2)y)/(dx^(2)) - 2a(dy)/(dx) + (a^(2) + b^(2))y = 0

Verify that the function y=c_(1)e^(ax)cos bx+c_(2)e^(ax)sin bx, where c_(1),c_(2) are arbitrary constants is a solution of the differential equation.(d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

Verify that the function y=C_(1)e^(ax)cos bx+C2ax sin bx,C_(1),C_(2), are arbitrary constants is a solution of the differentia equation (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

Find derivative of y=e^(ax)sin bx

find y_(n) where y=e^(ax)sin bx