Home
Class 12
MATHS
cos^(-1)a-cos^(-1)b=cos^(-1)[ab+sqrt((1-...

cos^(-1)a-cos^(-1)b=cos^(-1)[ab+sqrt((1-a^(2))(1-b^(2)))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^(-1)b-sin^(-1)a=cos^(-1)(bsqrt(1-a^(2))+asqrt(1-b^(2)))

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove the followings : If cos^(-1)a+cos^(-1)b+cos^(-1)c=pi then a^(2)+b^(2)+c^(2)+2abc=1 .

sin ^ (- 1) a-cos ^ (- 1) b = sin ^ (- 1) (ab-sqrt (1-a ^ (2)) sqrt (1-b ^ (2)))

Solve the equation: cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/b)-cos^(-1)(1/a)

Solve the equation: cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/b) - cos^(-1)(1/a)

if cos^(-1)((1-a^(2))/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=2tan^(-1)x then x is:

Prove that : cos ^(-1) ((1- a^(2))/(1+a)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .(a+b)/(1-ab)

Solve the equation: cos^(-1)((a)/(x))-cos^(-1)((b)/(x))=cos^(-1)((1)/(b))-cos^(-1)((1)/(a))