Home
Class 11
MATHS
[" Lt "(cot^(3)x-tan x)/(cos(x+pi/4))=],...

[" Lt "(cot^(3)x-tan x)/(cos(x+pi/4))=],[rarr pi/4],[" 1) "4]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (x rarr (pi) / (4)) (tan ^ (3) x-tan x) / (cos (x + (pi) / (4)))

lim_(x rarr(pi)/(4))(cot^(3)x-tan x)/(cos(x+(pi)/(4))) is equal to (A) 8(B)

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

cot((pi)/(4)-x)+cot((pi)/(4)+x)=4

The value of lim_(x rarr pi/4)(tan^(3)x-tan x)/(cos(x+(pi)/(4))) is 8 b.4 c.-8d .-2

Write the following functions in the simplest form : tan^(-1)((cos x -sin x)/(cos x + sin x)), -pi/4 lt x lt (3pi)/4

Show that cot(pi/4+x)cot(pi/4-x)=1

Show that cot(pi/4+x)cot(pi/4-x)=1

Show that cot(pi/4+x)cot(pi/4-x)=1