Home
Class 14
MATHS
[" Suppose "z" is any root of "11z^(8)+2...

[" Suppose "z" is any root of "11z^(8)+20iz^(7)+10iz-22=0," where "i=sqrt(-1)" .Then "S=|z|^(2)+|z|+1" satisfies "],[[" (A) "S<=3," (B) "3=13]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If 8iz^(3)+12z^(2)-18z+27i=0, (where i=sqrt(-1)) then

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to

Consider the given equation 11z^(10)+10iz^(9)+10iz-11=0, then |z| is

If 8iz^(3)+12z^(2)-18z+27i=0 then 2|z|=

If iz^(3)+z^(2)-z+i=0, where i=sqrt(-1) then |z| is equal to 1 (b) (1)/(2)(c)(1)/(4) (d) None of these

Show that if iz^(3)+z^(2)-z+i=0, then |z|=1

If z=(sqrt(3)+i)/(2) then (iz)^(59) is

if z=(sqrt(3)+i)/(2) then (iz)^(59)=