Similar Questions
Explore conceptually related problems
Recommended Questions
- " The value of "lim(x rarr1)(int^(x)|t-1|dt)/(sin(x-1))" is equal to "
Text Solution
|
- lim(x rarr1)(x-1)/(sin(x-1))
Text Solution
|
- lim(x rarr1)(x-1)/(sin(x-1))
Text Solution
|
- lim(x rarr1)(x-1)/(sin(x-1))
Text Solution
|
- lim(x rarr0)((sin x)/(x))^((sin x)/(x-sin x))+lim(x rarr1)x^((1)/(1-x)...
Text Solution
|
- lim (rarr rarr1) ((sin (x-1)) / (x ^ (2) -1)
Text Solution
|
- lim(x rarr1)[sin^(-1)x]=
Text Solution
|
- 8. Prove that lim(x rarr1^(+))((1)/(x-1))!=lim(x rarr1^(-))((1)/(x-1))
Text Solution
|
- lim(x rarr0)(int(0)^(1)sin t^(2)dt)/(x(1-cos x)) equals
Text Solution
|