Home
Class 12
MATHS
If y="sin"^(-1)(2x)/(1+x^(2)),0ltxlt1and...

If `y="sin"^(-1)(2x)/(1+x^(2)),0ltxlt1and0ltylt(pi)/(2)`, then `(dy)/(dx)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y = sin^(-1) ((2x)/(1 + x^2)) where 0 lt x lt 1 and 0 lt y lt pi//2 then (dy)/(dx) is equal to

If y=sin^(-1)((2x)/(1+x^(2))),-1ltxlt1 , find (dy)/(dx) ,

If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx) is equal to

If sin^(-1)x+sin^(-1)y=(pi)/(2), then (dy)/(dx) is equal to

If y=cos^-1((2x)/(1+x^2)),-1ltxlt1, Find (dy)/(dx)

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)), ="" then="" find="" (dy)/(dx)

If sin^(-1)x+sin^(-1)y=pi/2 , then (dy)/(dx) is equal to

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)), then find= (dy)/(dx)

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)),="" then="" find="" (dy)/(dx)