Home
Class 9
MATHS
If a^x=b^y=c^z" and "abc=1, then prove t...

If `a^x=b^y=c^z" and "abc=1`, then prove that `xy+yz+zx=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z) and abc=1 then find the value of xy+yz+zx

If a^(x) =b^(y) =c^(z) and abc =1 then xy+yz+zx is equal to which of the following?

If Tan^(-1)x+Tan^(-1)y + Tan^(-1)z = (pi)/2 , then prove that xy + yz + zx = 1

If tan^-1 x+tan^-1 y+tan^-1 z=pi/2 , prove that xy+yz+zx=1

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If cot^(-1)x + cot^(-1)y + cot^(-1)z = pi , prove that xy + yz + zx = 1 .

If x+y+2z=0 then prove that x^2/(yz)+y^2/(zx)+(8z^2)/(xy)=6