Home
Class 12
MATHS
the integral int (2x^(12)+5x^(9))/((x^(5...

the integral `int (2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int((2x^(12)+5x^(9))dx)/((x^(5)+x^(3)+1)^(3))

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

int(x^(3)-1)^(1//3)x^(5)dx is equal to

Integrate : int (2x^(2)-3x+9)/(x^(2)+4x-5)

Integrate: int(2x^2 - 3x+9)/(x^2+4x-5)dx

The integral int(1)/(4sqrt((x-1)^(3)(x+2)^(5)) dx is equal to (where c is a constant of integration)

Integrate: int((5x^(2)-12)dx)/((x^(2)-6x+13)^(2))

int((9x^(2)-4x+5))/((3x^(3)-2x^(2)+5x+1))dx

int((1-x^(5))^(3/5))/(x^(9))dx" equals "