Home
Class 12
MATHS
If n is integer then show that (1 + i...

If n is integer then show that
`(1 + i)^(2n) + (1 - i)^(2n) = 2 ^(n+1) cos . (npi)/2 ` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is an integer then show that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

If n is a positive integer, show that (1 + i)^(n) + (1 - i)^(n) = 2 ^((n+2)/2) cos ((npi)/4) .

" *.i).i) If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))

If n be a positive integer, then prove that (1+i)^n+(1-i)^n=2^(n/2+1)."cos"((npi)/4)

For a positive integer n show that (1+isqrt3)^n+(1-isqrt3)^n=2^(n+1) "cos"(npi)/3

If n is a positive integer, show that ( P + iQ)^(1//n) + ( P - iQ)^(1//n) = 2 ( P^(2) + Q^(2))^(1//2n) cos (1/n , tan . Q/P) .

(1+i)^(2 n)+(1-i)^(2 n), n in z is

For a positive integer n show that (1+i)^n+(1-i)^n=2^((n+2)/2) "cos((npi)/4)