Home
Class 12
MATHS
IF t=v^2/2, then (-(df)/(dt)) is equal t...

IF `t=v^2/2`, then `(-(df)/(dt))` is equal to ,
(where f is acceleration)

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2t= v^(2) then (dv)/(dt) = …….

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

A particle moves in such a way that its position vector at any time t is vec(r)=that(i)+1/2 t^(2)hat(j)+that(k) . Find as a function of time: (i) The velocity ((dvec(r))/(dt)) (ii) The speed (|(dvec(r))/(dt)|) (iii) The acceleration ((dvec(v))/(dt)) (iv) The magnitude of the acceleration (v) The magnitude of the component of acceleration along velocity (called tangential acceleration) (v) The magnitude of the component of acceleration perpendicular to velocity (called normal acceleration).

A particle moves in such a way that its position vector at any time t is vec(r)=that(i)+1/2 t^(2)hat(j)+that(k) . Find as a function of time: (i) The velocity ((dvec(r))/(dt)) (ii) The speed (|(dvec(r))/(dt)|) (iii) The acceleration ((dvec(v))/(dt)) (iv) The magnitude of the acceleration (v) The magnitude of the component of acceleration along velocity (called tangential acceleration) (v) The magnitude of the component of acceleration perpendicular to velocity (called normal acceleration).

If velocity of particle is given by v=2t^4 , then its acceleration ((dv)/(dt)) at any time t will be given by..

If velocity of particle is given by v=2t^4 , then its acceleration ((dv)/(dt)) at any time t will be given by..

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :