Home
Class 10
MATHS
यदि एक समांतर श्रेणी का p वां q वां तथा ...

यदि एक समांतर श्रेणी का `p` वां `q` वां तथा `r` वां पद क्रमशः x,y,z हैं तो सिद्ध कीजिए कि
`x(q-r)+y(r-p)+z(p-q)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If p,q,r are in A.P. while x,y,z are in G.P., prove that x^(q-r)y^(r-p)z^(p-q)=1

If x,y,z are in G.P and p,q,r are in A.P then prove that x^(q-r) y^(r-p) z^(p-q)=1 .

If p, q, r are in A.P. while x, y, z are in G.P., prove that x^(q-r).y^(r-p).z^(p-q) =1 .

If the pth, qth and rt terms of an A.P. be x,y,z respectively show that: x(q-r)+y(r-p)+z(p-q)=0

If the pth, qth and rth terms of an A.P. be x,y,z repsectively, then show that : x(q-r)+y(r-p)+z(p-q)=0

If the pth , qth , rth , terms of a GP . Are x,y,z respectively prove that : x^(q-r).y^(r-p).z^(p-q)=1

If p^(th) , q^(th) , r^(th) term of an A.P is x,y and z respectively. Show that x(q-r)+y(r-p)+z(p-q)=0

If p^(th), q^(th) and r^(th) terms of G.P. are x,y,z respectively then write the value of x^(q-r) y^(r-p) z^(p-q).

If the p^(th) , q^(th) and r^(th) terms of a G.P. are x , y , z respectively. then show that : x^(q-r) . y^(r-p).z^(p-q)=1