Home
Class 12
MATHS
The value of sin^(-1)("cos"(cos^(-1)(cos...

The value of `sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))),` where `x in (pi/2,pi)` , is equal to `pi/2` (b) `-pi` (c) `pi` (d) `-pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to (a) pi/2 (b) -pi (c) pi (d) -pi/2

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to a) pi/2 (b) -pi (c) pi (d) -pi/2

The values of Sin^(-1)(cos{Cos^(-1)(cosx)+Sin^(-1)(sinx)})" where "x in (pi/2, pi) is

The value of sin ^(-1)[cos (cos ^(-1)(cos x)+sin ^(-1)(sin x))] where x in((pi)/(2), pi) is

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)

The value of sin^(-1)[ cos {cos^(-1)(cosx)+sin^(-1)(sinx)}] where "x"in (pi/2,pi) is equal to a) pi/2 b) -pi c) pi d) -pi/2

The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3) is pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to