Home
Class 11
MATHS
y=f(x) be a real valued twice differenti...

`y=f(x)` be a real valued twice differentiable function defined on `R` then `(d^2y)/(dx^2) ((dx)/(dy))^2+(d^2x)/(dy^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

for any differential function y= F (x) : the value of ( d^2 y) /( dx^2) +((dy)/(dx)) ^3 . (d^2 x)/( dy^2)

for any differential function y= F (x) : the value of ( d^2 y) /( dx^2) +((dy)/(dx)) ^3 . (d^2 x)/( dy^2)

If y=f(x) is twice differentiable function such that at a point P,(dy)/(dx)=4,(d^2y)/(dx^2)=-3, then ((d^2x)/(dy^2))=

The order of the differential equation (d^(2)y)/(dx^(2)) + ((dy)/(dx))^(2) = x sin ((d^(2)y)/(dx^(2))) is

The degree of the differential equation ((d^(2)y)/(dx^(2)))+((dy)/(dx))^(2)=x sin((d^(2)y)/(dx)) , is