Home
Class 12
MATHS
if f(x)=x^2/(1+x^2)+x^2/(1+x^2)^2+x^2/(1...

if `f(x)=x^2/(1+x^2)+x^2/(1+x^2)^2+x^2/(1+x^2)^3+...............oo` is `f(x)` continuous at the origin? Give reasons for your answer.

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2f(x^2)+3f(1/x^2)=x^2-1 , then f(x^2) is

f(x)=x+2 and g(x)=(x^(2)-4)/(x-2) when f(x)=g(x). Give reason for your answer

If f(x)={(x^2)/2, if 0<=x<1, 2x^2-3x+3/2, if1 <=x<=2 .Show that f is continuous at x=1 .

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

If 2f(x^(2))+3f((1)/(x^(2)))=x^(2)-1, then f(x^(2)) is

f(x) = (2x - sin^(-1))/(2x + tan^(-1) (x)) is continuous at x = 0 then f(0) =

If f(x) = (sqrt(x+3)-2)/(x^(3)-1) , x != 1 , is continuous at x = 1, then f(1) is

If f(x) = (sqrt(x+3)-2)/(x^(3)-1) , x != 1 , is continuous at x = 1, then f(1) is

Let f(x)={(x)/(2)-1,0<=x<=1(1)/(2),1<=x<=2}g(x)=(2x+1)(x-k)+3,0<=x<=oo theng(f(x)) is continuous at x=1 if k equal to: