Home
Class 12
MATHS
" If "y=sin(2sin^(-1)x)," show that "(dy...

" If "y=sin(2sin^(-1)x)," show that "(dy)/(dx)=(2sqrt((1-y^(2))))/(sqrt(1-x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(2sin^(-1)x) , show that: (dy)/(dx)=2sqrt((1-y^(2))/(1-x^(2))) .

If y = sin(2sin^-1x) , show that: dy/dx=2sqrt((1-y^2)/(1-x^2))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) , show that (dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y) ,show that dy/dx=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2) = a(x-y), show that dy/dx = sqrt((1-y^2)/(1-x^2))

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

If sqrt(1 -x^2) + sqrt(1-y^2) = a(x-y), show that, (dy)/(dx) = sqrtfrac(1-y^2)(1-x^2)