Home
Class 11
MATHS
If y=xlog(x/(a+bx)) then x^2 (d^2y)/(dx^...

If `y=xlog(x/(a+bx))` then `x^2 (d^2y)/(dx^2)=(x((dy)/(dx))-y)^m` where

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=xlog(x/(a+bx)) , then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y =x log (x/(a+bx)) then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2 .

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) (x(dy)/(dx)-y) ^2 (b) x (dy/dx)-y (c) y(dy/dx)-x (d) (y(dy/dx)-x)^2

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^2 y(dy)/(dx)-x (d) (y(dy)/(dx)-x)^2

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

If y=xlog (x/(a+bx)) , prove that x^3(d^2y)/(dx^2)=(y-xdy/dx)^2 .

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

"If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=