Home
Class 12
MATHS
(lim)(x->0)((1^x+2^x+3^x++n^x)/n)^(1/x)\...

`(lim)_(x->0)((1^x+2^x+3^x++n^x)/n)^(1/x)\ ` is equal to `(n\ !)\ ^n` b. `(n !)^(1//n)` c. `n !` d. `"ln"(n !)`

Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(xvec0)((1^x+2x+3^x++n^x)/n)^(1//x)i se q u a lto (n !)^n (b) (n !)^(1/n) (c) n ! (d) "ln"(n !)

lim_(x rarr0)((1^(x)+2^(x)+.........*+n^(x))/(n))^((1)/(x)) is equal

(lim)_(x->a)(x^n-a^n)/(x-a) is equal to a. n a^n b . n a^(n-1) c. n a d. 1

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is a. (n!)^(a//n) b. n! c. a^(n!) d. Doesn't exist

lim_(ntooo) n^(2)(x^(1//n)-x^(1//(n+1))),xgt0, is equal to

lim_(ntooo) n^(2)(x^(1//n)-x^(1//(n+1))),xgt0, is equal to

(lim_(x rarr a)(x^(n)-a^(n))/(x-a) is equal to na^(n)b*na^(n-1) c.nad.1

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)