Home
Class 11
MATHS
sum(i=1)^ootan^(- 1)(1/(2i^2))=t ,t h e ...

`sum_(i=1)^ootan^(- 1)(1/(2i^2))=t ,t h e n t a nt=( B )1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(i=1)^ootan^(- 1)(1/(2i^2))=t ,then tant=

The sum sum _(n=1)^ootan^(-1)(1/(2^n+2^(1-n))) equals

The sum sum _(n=1)^ootan^(-1)(1/(2^n+2^(1-n))) equals

If x=sin^(-1)((2t)/(1+t^2))a n d \ y=tan^(-1)((2t)/(1-t^2)),t > 1. P rov e \ t h a t(dy)/(dx)=-1

Let s_(1), s_(2), s_(3).... and t_(1), t_(2), t_(3) .... are two arithmetic sequences such that s_(1) = t_(1) != 0, s_(2) = 2t_(2) and sum_(i=1)^(10) s_(i) = sum_(i=1)^(15) t_(i) . Then the value of (s_(2) -s_(1))/(t_(2) - t_(1)) is

Let s_(1), s_(2), s_(3).... and t_(1), t_(2), t_(3) .... are two arithmetic sequences such that s_(1) = t_(1) != 0, s_(2) = 2t_(2) and sum_(i=1)^(10) s_(i) = sum_(i=1)^(15) t_(i) . Then the value of (s_(2) -s_(1))/(t_(2) - t_(1)) is

Let s_(1),s_(2),s_(3),... and t_(1),t_(2),t_(3)... are two arithmetic sequences such that s_(1)=t_(1)!=0,s_(2)=2t_(2) and sum_(i=1)^(10)s_(1)=sum_(i=1)^(15)t_(1) Then the value of (s_(2)-s_(1))/(t_(2)-t_(1)) is

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2