Home
Class 10
MATHS
" If "3A=[[1,2,2],[2,1,-2],[-2,2,-1]]" t...

" If "3A=[[1,2,2],[2,1,-2],[-2,2,-1]]" then show that "A^(-1)=A^(T)

Promotional Banner

Similar Questions

Explore conceptually related problems

A=[[1,2,2],[2,1,2],[2,2,1]] , then show that A^2-4A=5I_3

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]], show that 3adjA=A^T.

If A=[(1,2,2),(2,1,-2),(-2,2,-1)] then A^(T)=

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]] then show that the adjoint of A is 3A^(T) .Find A^(-1)

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T . Also find A^-1 .

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adjA=3A^T Also find A^-1

If A=(1)/(3)[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A A'=A'A=I.

If A=[[1,2,],[3,4,]],B=[[-2,3,],[-1,2,]] ,show that (A+B)^T=A^T+B^T.

If A=[[1,2,],[3,4,]],B=[[-2,3,],[-1,2,]] ,show that (A+B)^T=A^T+B^T.

If A=(1)/(3){:[(-1,2,-2),(-2,1,2),(2,2,1)] show that "AA"^(T)=I .