Home
Class 11
MATHS
" Let "A=[[2,b,1],[b,b^(2)+1,b],[1,b,2]]...

" Let "A=[[2,b,1],[b,b^(2)+1,b],[1,b,2]]" where "b>0." Then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A = [{:(2, b,1),(b, b^(2)+1,b),(1, b,2):}], " where "b gt 0 . Then, the maximum value of ("det"(A))/(b) is

Let A=[[2,0,1],[1,1,0],[1,0,1]],B=[B_(1),B_(2),B_(3)] ,where B_(1),B_(2),B_(3) are column matrics,and [AB_(1)=[[1],[0],[0]],AB_(2)=[[2],[3],[0]],AB_(3)=[[3],[2],[1]]] If alpha=|B| and beta is the sum of all the diagonal elements of "B" ,then alpha^(3)+beta^(3) is equal to

Let A= [[1,-1],[2,-1]] and B= [[1,a],[4,b]] . If (A+B)^2=A^2+B^2 , then (a, b)=

Let Delta=|(a,a^(2),0),(1,2a+b,(a+b)^(2)),(0,1,2a+3b)| then

Let A=[[1,2],[3,4]] , B=[[2,1],[4,5]] , C=[[1,-1],[0,2]] Show that (A+B)+C=A+(B+C)

Let A=[[1,2],[3,4]] , B=[[2,1],[4,5]] , C=[[1,-1],[0,2]] Find A+B and A-B