Home
Class 12
MATHS
If f(a+b+1-x)=f(x), for all x where a an...

If `f(a+b+1-x)=f(x)`, for all x where a and b are fixed positive real numbers, the `(1)/(a+b) int_(a)^(b) x(f(x)+f(x+1)` dx is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluation of definite integrals by subsitiution and properties of its : If f(a+b+1-x)=f(x)AAx where a and b are fixed positive real numbers, then (1)/(a+b)int_(a)^(b)x(f(x)+f(x+1)dx= is equal to

If f(a+b-x)=f(x) , then int_(a)^(b) x f(x)dx is equal to -

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=