Home
Class 11
MATHS
If a1,a2,a3,.....an.... are in G.P. then...

If `a_1,a_2,a_3,.....a_n....` are in G.P. then the determinant `Delta=|[loga_n,loga_(n+1),loga_(n+2)],[loga_(n+3),loga_(n+4),loga_(n+5)],[loga_(n+6),loga_(n+7),loga_(n+8)]|` is equal to- (A) -2 (B) 1 (C) -1 (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,.....a_n.... are in G.P. then the determinant Delta=|[log a_n, log a_(n+1), log a_(n+2)],[log a_(n+3),loga_(n+4),log a_(n+5)],[log a_(n+6),log a_(n+7),log a_(n+8)]| is equal to- (A) -2 (B) 1 (C) -1 (D) 0

If a_(1), a_(2), a_(3)"….." are in G.P. , then the value of Delta= |{:(log a_(n),loga_(n+1),loga_(n+2)),(log a_(n+3),loga_(n+4),loga_(n+5)),(loga_(n+6),loga_(n+7),loga_(n+8)):}| is :

If a_1,a_2…,a_n are in G.P. then evalute.: |{:(loga_n,loga_(n+1),loga_(n+2)),(loga_(n+3),loga_(n+4),loga_(n+5)),(loga_(n+6),loga_(n+7),loga_(n+8)):}|=0

If a_(1),a_(2),a_(3)… are in G.P. then the value of |{:(log a_(n),loga_(n+1),log a_(n+2)),(log a_(n+3),log a_(n+4),log a_(n+5)),(log a_(n+6),log a_(n+7),log a_(n+8)):}| is

If a_(1), a_(2), a_(3), ………, a_(n) ….. are in G.P., then the determinant Delta = |(""loga_(n)" "loga_(n + 1)" "log_(n + 2)""),(""loga_(n + 3)" "loga_(n + 4)" "log_(n + 5)""),(""loga_(n + 6)" "loga_(n + 7)" "log_(n + 8)"")| is equal to

If a_1, a_2,........,a_n are in G.P. and a_i gt 0 for every i, then find the value of [[loga_n, loga_(n+1),loga_(n+2)],[loga_(n+1),loga_(n+2),loga_(n+3)],[loga_(n+2),loga_(n+3),loga_(n+4)]]

If a_(n)( gt 0) be the n^(th) term of a G.P. then |(log a_(n), log a_(n+1), log a_(n+2)),(log a_(n+3), loga_(n+4),log a_(n+5)),(log a_(n+6),log a_(n+7), log a_(n+8))| is equal to

If a_(1),a_(2),a_(3),……….a_(n) ………… are in G.P and a_(i) gt 0 then the value of the determinant |(loga_(n),log a_(n+1),loga_(n+2)),(loga_(n+1),loga_(n+2),loga_(n+3)),(loga_(n+2),loga_(n+3),loga_(n+4))| is