Home
Class 12
MATHS
" (i) "sin^(-1)(1)/(sqrt(5))+cos^(-1)x=(...

" (i) "sin^(-1)(1)/(sqrt(5))+cos^(-1)x=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

sin ^(-1) "" (1)/(sqrt(5))+cot ^(-1) 3= (pi)/(4)

sin^(-1)(1/5)+cos^(-1)x=(pi)/(2)

If sin^(-1)(1/sqrt(5)) and cos^(-1)(3/sqrt(10)) are angles in [0,(pi)/(2)] , then their sum is equal to

Solve for x : cot^(-1)x + sin^(-1)(1/sqrt(5)) = pi/4

Show that sin^(-1)(1/sqrt(10))+cos^(-1)(2/sqrt5)=pi/4 .

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)