Home
Class 12
MATHS
[[2bc-a^(2),c^(2),b^(2)],[c^(2),2ac-b^(2...

[[2bc-a^(2),c^(2),b^(2)],[c^(2),2ac-b^(2),a^(2)],[b^(2),a^(2),2ab-c^(2)]|=(a^(3)+b^(3)+c^(3)-3abc)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2)):}|=k(a^(3)+b^(3)+c^(3)-3abc)^(l) then the value of (k, l) is

Using properties of determinants , prove that, |{:(a,b,c),(b,c,a),(c,a,b):}|=-(a^3+b^3+c^3-3abc) and hence show that, |{:(2bc-a^2," "c^2," "b^2),(" "c^2,2ca-b^2," "a^2),(" "b^2," "a^2,2ab-c^2):}|=(a^3+b^3+c^3-3abc)^2

I: |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=2a^(2)b^(2)c^(2) II: |(0,ab^(2),ac^(2)),(a^(2)b,0,bc^(2)),(a^(2)c,b^(2)c,0)|=2a^(3)b^(3)c^(3)

If a,b,c are the roots of the equation x^(3)-3x^(2)+3x+7=0, then the value of det[[2bc-a^(2),c^(2),b^(2)c^(2),2ac-b^(2),a^(2)b^(2),a^(2),2ab-c^(2)]] is

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

prove that |{:((b+c)^(2),,bc,,ac),(ba,,(c+a)^(2),,cb),(ca,,cb,,(a+b)^(2)):}| |{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}| =2abc (a+b+c)^(3)

prove that |{:((b+c)^(2),,bc,,ac),(ba,,(c+a)^(2),,cb),(ca,,cb,,(a+b)^(2)):}| |{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}| =2abc (a+b+c)^(3)

prove that |{:((b+c)^(2),,bc,,ac),(ba,,(c+a)^(2),,cb),(ca,,cb,,(a+b)^(2)):}| |{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}| =2abc (a+b+c)^(3)