Home
Class 10
MATHS
यदि an =3 -4n , तो दिखाइए की a1 ,a2,a3,....

यदि `a_n =3 -4n ,` तो दिखाइए की `a_1 ,a_2,a_3,.....` एक `A.P.` बनाते है| `S_(20)` भी ज्ञात कीजिए|

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

sum_(n=1)^20 1/(a_n a_(n+1))=4/9 , a_1,a_2,a_3 . . . are in A.P and also sum of first 21 terms of A.P is 189 then find the value of a_6a_16

If a_1, a_2, a_3..... a_n in R^+ and a_1.a_2.a_3.........a_n = 1, then minimum value of (1+a_1 + a_1^2) (1 + a_2 + a_2^2)(1 + a_3 + a_3^2)........(1+ a_n + a_n^2) is equal to :-

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these