Home
Class 11
MATHS
lim x→0 ( sin x ) / x is equ...

lim x→0 ( sin x ) / x is equal to a. 1           b . π c. x d. π/180

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim_(x rarr0)(sin2x)/(x) is equal to a.1b*1/2c.2d.0

(lim)_(x->0)(sin2x)/x is equal to a. 1 b . 1/2 c. 2 d. 0

(lim_(x rarr0)(sin x^(0))/(x) is equal to a.1b*pi c.xdpi/180

lim_(x rarr0)(a^(sin x)-1)/(b^(sin x)-1) is equal to

lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

lim_(x rarr0)(ln(sin2x))/(ln(sin x)) is equals to a.0 b.1 c.2 d.non x rarr0ln(sin x) existent

(lim)_(x rarr oo)(|x|)/(x) is equal to a.1b*-1c.0d . none of these

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to a) π b) π/2 c) 0 d) 2π

lim_(x->oo)(sin^4x-sin^2x+1)/(cos^4x-cos^2x+1) is equal to (a) 0 (b) 1 (c) 1/3 (d) 1/2