Home
Class 11
MATHS
lim(x rarr0)(2e^(x)-2)/(x)...

lim_(x rarr0)(2e^(x)-2)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(5x)-1)/(x)

lim_(x rarr0)(2^(x)-1)/(x)

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

Evaluate : lim_(x rarr0)(a^(2x)-1)/(x)

lim_(x rarr0)((e^(x)-x-1)/(x))

The value of lim_(x rarr 0) ((e^(x)-1)/x)

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)