Home
Class 12
MATHS
[:.quad I=(cdots)/(2)(pi-2)],[int(1)^(4)...

[:.quad I=(cdots)/(2)(pi-2)],[int_(1)^(4){|x-1|+|x-2|+|x-3|]

Promotional Banner

Similar Questions

Explore conceptually related problems

I = int_ (1) ^ (2) | x sin pi x | dx

int e^((1)/(x))cdot(1)/(x^(2))dx

If I_(1) = int_(0)^(1) 2^(x^(2))dx, I_(2) = int_(0)^(1) 2^(x^(3))dx , I_(3) = int_(1)^(2) 2^(x^(2))dx, I_(4)=int_(1)^(2) 2^(x^(3))dx then

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

IfI_(1)=int_(0)^(1)2^(x^(2)),I_(2)=int_(0)^(1)2^(x^(3))dx,I_(3)=int_(1)^(2)2^(x^(2))dx,I_(4)=int_(1)^(2)2^(x^(3))dx then which of the following is/are true? I_(1)>I_(2)(b)I_(2)>I_(1)I_(3)>I_(4)(d)I_(3)

int_(-(pi)/(2))^((pi)/(2))(dx)/(1+cot^(4)x)

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then