Home
Class 11
MATHS
Prove that sin^(2)(A + B) - sin^(2)(A -...

Prove that
`sin^(2)(A + B) - sin^(2)(A - B) = sin 2A sin 2B`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(2)(A+B)-sin^(2)(A-B)=sin2A*sin2B

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

Prove that : sin (A + B) sin (A - B) = sin^2A- sin^2B .

Prove that sin ( A + B) sin (A - B) = sin^(2) A - sin^(2)B .

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

If A+B+C=(pi)/(2) , then prove that sin ^(2) A+ sin ^(2) B + sin ^(2) C=1-2 A sin B sin C .

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

Prove that sin(A+B)sin(A-B) = sin^(2)A-sin^(2)B

Prove that : 2sin A cosB = sin (A + B) + sin (A -B) .

If A + B + C = 180^(@) , prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C