Home
Class 10
MATHS
If x^2+y^2=6xy, prove that 2log(x+y)=log...

If `x^2+y^2=6xy,` prove that `2log(x+y)=logx+logy+3log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=6xy prove that 2log(x+y)=log x+log y+3log2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^(2) + y^(2)=6xy , prove that 2 log (x+ y)= log x + log y + 3 log 2

If x^(2)+y^(2)=10xy prove that 2log(x+1)=log x+log y+2log2+log3

If x^2+y^2=25xy. then prove that 2log(x+y)=3log3+logx+logy.

If x^(2)+y^(2) = 6xy , then prove that 2log(x+y) = log x + logy + 3log2 .