Home
Class 12
MATHS
tan^(-1) [(a+b tan x)/(b-a tan x)]...

`tan^(-1) [(a+b tan x)/(b-a tan x)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)( (a+b tan c)/ (b-a tan x) )

Differentiate the following w.r.t. x: tan^(-1) (frac {a+b tan x}{b- a tan x})

(d)/(dx) {Tan ^(-1) ((b tan x )/(a ))}=

int(dx)/(a+b tan x)dxa+b tan x

Show that tan^(-1)[(acos x-bsin x)/(b cos x+a sin x)]= tan^(-1)(a/b)-x" when "(a)/(b)tan^(-1)x gt -1 .

If int (sqrttanx + sqrtcotx) dx = a tan^-1 ((tan x - 1)/sqrt(b tan x)) + c , then the value of sqrt(a^4 + b^5) must be

Simplify tan^(-1) [(a cos x -b sin x)/(b cos x +a sin x)] , if (a)/(b) tan x gt -1 .

Simplify tan^(-1)[(a cos x-b sin x)/(b cos x+a sin x)], if (a)/(b)tan x>-1

int(1)/(1-sin^(4)x)dx=(1)/(a sqrt(b))+tan^(-1)(sqrt(a)tan x)+(1)/(b)tan x+C then (a)/(b) is equal to

Simplify tan ^(-1)[(a cos x-b sin x)/(b cos x+a sin x)] if, a/b tan xgt(-1)