Home
Class 10
MATHS
O' is any point inside a rectangle ABCD....

O' is any point inside a rectangle ABCD.
Prove that `OB^2+OD^2=OA^2+OC^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

O is any point inside a rectangle ABCD. Prove that O B^2+O D^2=O A^2+O C^2 .

O is any point inside a rectangle ABCD. Prove that O B^2+O D^2=O A^2+O C^2 .

O is any point inside a rectangle ABCD, Prove that OA^(2) + OC^(2)= OB^(2) + OD^(2)

O is any point inside a rectangle. Prove that OA^2+OC^2=OB^2+OD^2 .

P is any point inside the rectangle ABCD. Prove that AP^2+CP^2=BP^2+DP^2

O is any point inside a rectangle ABCD (see Fig. 6.52). Prove that OB^2 + OD^2 = OA^2 + OC^2 .

If 'O' is any point in the interior of rectangle ABCD,then prove that: OB^2+OD^2=OA^2+OC^2 .

If 'O' is any point in the interior of rectangle ABCD, then prove that : OB^(2) + OD^(2) = OA^(2) + OC^(2)

O is any point inside a rectangle ABCD (see the given figure). Prove that OB^(2)+OD^(2)= OA^(2)+OC^(2) .

O is any point inside the rectangle ABCD. If OB = 6cm, OD = 8cm and OA = 5cm, then find the length of OC.