Home
Class 12
MATHS
अवकल समीकरणों में कोटि तथा घाट ज्ञात कीज...

अवकल समीकरणों में कोटि तथा घाट ज्ञात कीजिये-
`(d^(3)y)/(dx^(3))=root(4)(y+((dy)/(dx))^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

find order and degree (d^(2)y)/(dx^(2)) = root(3)(1 + ((dy)/(dx))^(2))

The order and degree of D.E. (d^(2)y)/(dx^(2))=root3(1+((dy)/(dx))^(2)) are

What is the degree of x((d^(2)y)/(dx^(2)))^(3)+y((dy)/(dx))^(4)+x^(3)=0 ?

find order and degree ((d^(2)y)/(dx^(2)))+((dy)/(dx))^(3)+y^(4)=0

Find the order and degree of ((d^(3)y)/(dx^(3)))^(2)-3((dy)/(dx))^(2)-e^(x)=4 .

The degree and order of the D.E ((d^(3)y)/(dx^(3)))^(2)-((dy)/(dx))^(5)=x^(4) is

The order and degree of the differential equation (d^(2)y)/(dx^(2))=root(3)(1-((dy)/(dx))^(4)) are respectively

Order and degree of the differential equation (d^(2)y)/(dx^(2))=root(3)(1+((dy)/(dx))^(3)) respectively are

Find degree and order x(d^(2)y)/(dx^(2))+((dy)/(dx))^(5)-y(dy)/(dx)=3

Degree and order xy(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)-y(dy)/(dx)=sinx