Home
Class 12
MATHS
lim(x to 3) (x^(3) - x^(2) + 15 x - 9...

`lim_(x to 3) (x^(3) - x^(2) + 15 x - 9)/(x^(4) - 5x^(3) + 27x - 27)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate the following limit : lim_(x rarr 3) (x^3- 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27) .

lim_(x rarr3)(x^(3)-7x^(2)+15x-9)/(x^(4)-5x^(3)+27x-27) is equal to:

lim_(x to 3) (x^(2) - 27)/(x^(2) - 9) is equal to

Evaluate lim_(x to 3) (x - 3)/(4x^(2) - 15x + 9)

lim_(x rarr3)(x^(3)-27)/(x^(2)-9)

lim_(xrarr3) (x^(3)-27)/(2x^(2)-5x-3)

lim_(x->3)(x^(3)-27)/(x-3)

lim_(xrarr3) ](x^(3)-27)/(2x^(2)-5x-3)

lim_(x to 27) (x^(1//3) + 3) (X^(1//3) - 3))/(x - 27) is equal to