Home
Class 10
MATHS
Prove: cot^2A cos e c^2B-cot^2B cos e c^...

Prove: `cot^2A cos e c^2B-cot^2B cos e c^2A=cot^2A-cot^2B` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: cot^(2)A cos ec^(2)B-cot^(2)B cos ec^(2)A=cot^(2)A-cot^(2)B

Prove that: cot^2A-tan^2A=4\ cot2A cos e c2A

Prove that: (cos A+cos B)/(cos B-cos A)=cot((A+B)/2)cot((A-B)/2)

If A + B + C =pi/2 , prove that : cot A + cot B + cot C = cot A cot B cot C .

Prove that: (cos A+cos B)/(cos B-cos A)=cot((A+B)/(2))cot((A-B)/(2))

a^(2) cot A+ b^(2) cot B+ c ^(2) cot C =

The value of (cos ecA.cos ecB+cot A*cot B)^(2)-(cos ecA.cot B+cos ecB.cot A)^(2)

(cos2B+cos2A)/(cos2B-cos2A)=cot(A+B)*cot(A-B)

Prove the following identities: cot^4A-1=cos e c^4A-2cos e c^2A

If A+B+C=pi , prove that : cot, A/2+ cot, B/2 + cot, C/2 = cot, A/2 cot, B/2 cot, C/2